Evaluation of A New Mixed-Phase Cloud Microphysics Parameterization with the NCAR Climate Atmospheric Model (CAM3) and ARM Observations
نویسندگان
چکیده
Mixed-phase clouds are composed of a mixture of cloud droplets and ice crystals. The cloud microphysics in mixed-phase clouds can significantly impact cloud optical depth, cloud radiative forcing, and cloud coverage. However, the treatment of mixed-phase clouds in most current climate models is crude and the partitioning of condensed water into liquid droplets and ice crystals is prescribed as temperature dependent functions. In our previous 2007 ARM metric reports a new mixed-phase cloud microphysics parameterization (for ice nucleation and water vapor deposition) was documented and implemented in the NCAR Community Atmospheric Model Version 3 (CAM3). The new scheme was tested against the Atmospheric Radiation Measurement (ARM) Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the single column modeling and short-range weather forecast approaches. In this report this new parameterization is further tested with CAM3 in its climate simulations. It is shown that the predicted ice water content from CAM3 with the new parameterization is in better agreement with the ARM measurements at the Southern Great Plain (SGP) site for the mixed-phase clouds. iii
منابع مشابه
Evaluation of Mixed-Phase Cloud Parametrizations in Short-Range Weather Forecasts with CAM3 and AM2 for Mixed-Phase Arctic Cloud Experiment
Mixed-phase clouds dominate low-level Arctic clouds in cold seasons and have a significant impact on the surface energy budget. However, the treatment of mixed-phase clouds in most current climate models is crude because the detailed microphysical processes involved in mixed-phase clouds are not completely understood, primarily owe to the paucity of cloud observations in the past. Improving mix...
متن کاملEvaluation of Mixed-Phase Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 and AM2 for Mixed-Phase Arctic Cloud Experiment
Mixed-phase clouds dominate low-level Arctic clouds in cold seasons and have a significant impact on the surface energy budget. However, the treatment of mixed-phase clouds in most current climate models is crude because the detailed microphysical processes involved in mixed-phase clouds are not completely understood, primarily owe to the paucity of cloud observations in the past. Improving mix...
متن کاملSimulations of Arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE
[1] Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the MixedPhase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate...
متن کاملTesting Cloud Microphysics Parameterizations in NCAR CAM5 with ISDAC and M-PACE Observations
[1] Arctic clouds simulated by the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site i...
متن کاملDevelopment and Testing of an Aerosol-Stratus Cloud Parameterization Scheme for Middle and High Latitudes
The aim of this new project is to develop an aerosol/cloud microphysics parameterization of mixed-phase stratus and boundary layer clouds. Our approach is to create, test, and implement a bulk-microphysics/aerosol model using data from Atmospheric Radiation Measurement (ARM) Cloud and Radiation Testbed (CART) sites and large-eddy simulation (LES) explicit bin-resolving aerosol/microphysics mode...
متن کامل